KHO THƯ VIỆN 🔎

CHƯƠNG 1: HÀM GIẢI TÍCH

➤  Gửi thông báo lỗi    ⚠️ Báo cáo tài liệu vi phạm

Loại tài liệu:     PDF
Số trang:         160 Trang
Tài liệu:           ✅  ĐÃ ĐƯỢC PHÊ DUYỆT
 













Nội dung chi tiết: CHƯƠNG 1: HÀM GIẢI TÍCH

CHƯƠNG 1: HÀM GIẢI TÍCH

CHƯƠNG 1: HÀM GIÃI TÍCH§1. SỎ PHỨC VÀ CÁC PHÉP TÍNH1.Dạng đại số cùa số phức: Ta gọi số phức là một biểu thức dạng (x + jy) trong đó X và y là các số

CHƯƠNG 1: HÀM GIẢI TÍCH thực và j là đơn vị ão. Các số X và y là phần thực và phân áo cùa số phức. Ta thường ki hiệu:z = X + jyX = Rez = Re(x + jy)y = Imz = Im(x + jy)Tập hợ

p các số phức được kí hiệu là c. Vậy:C = { z = X + jy I X € R . y G R}trong đó R là tập hợp các số thực.Nếu y = 0 ta có z = X. nghía là số thực là trư CHƯƠNG 1: HÀM GIẢI TÍCH

ờng hợp riêng của số phức với phần ão bang 0. Nếu X = 0 ta z = jy và đó là một số thuần ào.So phức z = X - iy được gọi là số phức liên hợp của z = X +

CHƯƠNG 1: HÀM GIẢI TÍCH

iy. Vậy Re(z) = Re(z), Im(z) = - Im(z), z = z.Số phức -z = -X - jy là số phức đối của z = X + jy.Hai số phức Z] = X1 + jy 1 và z2 = x2 + jy2 gọi là b

CHƯƠNG 1: HÀM GIÃI TÍCH§1. SỎ PHỨC VÀ CÁC PHÉP TÍNH1.Dạng đại số cùa số phức: Ta gọi số phức là một biểu thức dạng (x + jy) trong đó X và y là các số

CHƯƠNG 1: HÀM GIẢI TÍCH (y1+jy2)là tổng của hai sổ phức Z[ và z2.Phép cộng có các tinh chất sau:Z1 + z2 = z2 + Z1(giao hoán)Z1 + (z2 + z3) = (Z1 + z2) + z3 (kết hợp)h. Phép t

rừ: Cho 2 số phức Z] = X] - jyi và z2 = x2 + jy2. Ta gọi số phứcz = (xi-x2)+j(yi -jy2)là hiệu của hai số phức zl và z2.c. Phép nhân: Cho 2 số phức Z] CHƯƠNG 1: HÀM GIẢI TÍCH

= X1 + jyi và z2 = x2 + jy2. Ta gọi số phứcz = Z|.Z2 = (X]X2-yty2) +j(xiy2+ x2yi)là tích của hai sô phức Z1 và z2.Phép nhân có các tính chất sau:zbz2

CHƯƠNG 1: HÀM GIẢI TÍCH

= z2.Zị(tinh giao hoán)(Z1.Z2).Z3 = Zl(z2.z3) (tinh kết hợp)Zi(z2 + z3) = Z1.Z2 + z2.z3 (tinh phân bố)(-1.Z) = -zZ.0 = 0. z = 0j-j = -l(ỉ. Phép chia:

CHƯƠNG 1: HÀM GIÃI TÍCH§1. SỎ PHỨC VÀ CÁC PHÉP TÍNH1.Dạng đại số cùa số phức: Ta gọi số phức là một biểu thức dạng (x + jy) trong đó X và y là các số

CHƯƠNG 1: HÀM GIẢI TÍCH _..2 . -.2 + f ..2 .2

CHƯƠNG 1: HÀM GIÃI TÍCH§1. SỎ PHỨC VÀ CÁC PHÉP TÍNH1.Dạng đại số cùa số phức: Ta gọi số phức là một biểu thức dạng (x + jy) trong đó X và y là các số

Gọi ngay
Chat zalo
Facebook