KHO THƯ VIỆN 🔎

DellAntonio mathematics of quantum mechanjcs i

➤  Gửi thông báo lỗi    ⚠️ Báo cáo tài liệu vi phạm

Loại tài liệu:     PDF
Số trang:         466 Trang
Tài liệu:           ✅  ĐÃ ĐƯỢC PHÊ DUYỆT
 













Nội dung chi tiết: DellAntonio mathematics of quantum mechanjcs i

DellAntonio mathematics of quantum mechanjcs i

Gianfausto Dell'AntonioLectures on the Mathematics ofQuantum Mechanics42047Mathematical Department, Univcrsita’ Sapienza (Borne) Mathematics Area. ISA

DellAntonio mathematics of quantum mechanjcs i AS (Trieste)2.4 Caterina. Piammetta, SimoneitaWhether our attempt stands the test can only be shown by quantitative. calculations of simple, systemsMa

r Horn. On Quantum Mechanicsz. fur Physik 2G, 379-395 (1924)ContentsPresentation...................................................... 11Volume I Basi DellAntonio mathematics of quantum mechanjcs i

c elements....................................... 12Volume II - Selected topics................................... 13Bibliography for volumes I and II

DellAntonio mathematics of quantum mechanjcs i

............................. 141Lecture 1. Elements of the history of Quantum Mechanics I 101.1Introduction..........................................

Gianfausto Dell'AntonioLectures on the Mathematics ofQuantum Mechanics42047Mathematical Department, Univcrsita’ Sapienza (Borne) Mathematics Area. ISA

DellAntonio mathematics of quantum mechanjcs i cs2.Schrodinger’s formalism... 311.5References for Lecture 1................................. 332Lecture 2. Elements of the history of Quantum Mechani

csII.......................................................... 352.1Birth of Quantum Mechanics 3. Born. Heisenberg. Jordan .... 352.2Birth of Quantu DellAntonio mathematics of quantum mechanjcs i

m Mechanics I. Heisenberg and the algebraof matrices.............................................. 392.3Birth of Quant um Mechanics5.Born's postulate.

DellAntonio mathematics of quantum mechanjcs i

........ 422.4Birth of Quant um Mechanics6.Pauli;spin. Statistics... 432.5f urther developments: Dirac, Heisenberg, Pauli, Jordan, vonNeumann.........

Gianfausto Dell'AntonioLectures on the Mathematics ofQuantum Mechanics42047Mathematical Department, Univcrsita’ Sapienza (Borne) Mathematics Area. ISA

DellAntonio mathematics of quantum mechanjcs i ................. 482.8Anlicommutation relations ............................... 502.9Algebraic structures of Hamiltonian and Quantum Mechanics.Pauli'

s analysis of the spectrum of t he hydrogen atom.... 512.10Dirac’s theorem........................................ 54 DellAntonio mathematics of quantum mechanjcs i

Gianfausto Dell'AntonioLectures on the Mathematics ofQuantum Mechanics42047Mathematical Department, Univcrsita’ Sapienza (Borne) Mathematics Area. ISA

Gọi ngay
Chat zalo
Facebook